Minimal Residual Based Iterative Methods and Its Parallel Implementation for Sparse Linear Systems
Author:
Liu Jiang,Wang Jin
Publisher
Springer Singapore
Reference27 articles.
1. Adsuara, J., Cordero-Carrión, I., Cerdá-Durán, P., Aloy, M.: Scheduled relaxation Jacobi method: improvements and applications. J. Comput. Phys. 321, 369–413 (2016). https://doi.org/10.1016/j.jcp.2016.05.053 2. Ascher, U.M., Greif, C.: A first course on numerical methods. Computational Science and Engineering, vol. 7. SIAM (2011) 3. Bai, Z.Z., Golub, G.H., Ng, M.K.: Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems. J. Matrix Anal. Appl. 24(3), 603–626 (2003). https://doi.org/10.1137/S0895479801395458 4. Bai, Z.Z., Golub, G.H., Ng, M.K.: On inexact Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems. Linear Algebr. Appl. 428(2–3), 413–440 (2008). https://doi.org/10.1016/j.laa.2007.02.018 5. Bai, Z.Z., Golub, G.H., Pan, J.Y.: Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems. Numerische Mathematik 98(1), 1–32 (2004). https://doi.org/10.1007/s00211-004-0521-1
|
|