Structure and Functioning of China’s Dryland Ecosystems in a Changing Environment

Author:

Li Changjia,Fu Bojie,Wang Shuai,Stringer Lindsay C.,Zhou Wenxin,Lu Tong,Wu Xutong,Hu Rina,Ren Zhuobing

Abstract

AbstractChina has one of the largest dryland areas worldwide, covering 6.6 million km2 and supporting approximately 580 million people. Conflicting findings showing a drier China’s drylands with increasing aridity and observed greenness indicate the complexity of environmental processes, highlighting a pressing research need to improve understanding of how active dryland processes, ecosystem structure and functioning will alter. This chapter synthesizes the changes, impacts, and their drivers in China’s dryland ecosystems. Results from analyses covering the period 2000–2015 showed that 58.69% of the vegetated area exhibited an increase in vegetation greenness, cover, and productivity, while 4.29% of those showed a decrease in all three aspects. However, 37.02% of the vegetated area showed inconsistent trends in vegetation greenness, cover, and productivity, suggesting high uncertainty in estimations of vegetation dynamics in drylands. China’s drylands are nevertheless at risk of expansion and could pass an irreversible tipping point with increasing aridity, particularly in the country’s semi-arid regions. Nitrogen enrichment and overgrazing generally reduce plant species diversity. Wind erosion, water erosion, salinization, and freeze–thaw erosion are typical processes of desertification in China’s drylands. Large-scale ecological restoration projects enhance greening and ecosystem services of China’s drylands, but also impose substantial pressure on these water-limited environments. Future research is needed to examine interactions among different drivers of environmental change (e.g., the relationships between CO2 fertilization and increased aridity). Such research could usefully include complex systems approaches to link patterns and processes across spatial and time scales, and long-term experiments on physical‐chemical‐biological process interactions.

Funder

Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences

Publisher

Springer Nature Singapore

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3