On the Performance Analyses of a Modified Force Field Algorithm for Obstacle Avoidance in Swarm Robotics
Author:
Balasubramanian GirishORCID,
Muthukumaraswamy Senthil ArumugamORCID,
Kong XianwenORCID
Publisher
Springer Singapore
Reference15 articles.
1. Advances in Intelligent Systems and Computing;SB Mane,2019
2. Chan, S.H., Xu, X., Wu, P.T., Chiang, M.L., Fu, L.C.: Real-time obstacle avoidance using supervised recurrent neural network with automatic data collection and labeling. In: 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), pp. 472–477. IEEE (2019)
3. A.K., Wang, J. and Liu, X. : Obstacle avoidance of mobile robots using modified artificial potential field algorithm. EURASIP J. Wirel. Commun. Netw. 2019(1), 70. (2019). https://doi.org/10.1186/s13638-019-1396-2
4. Sezer, V., Gokasan, M.: A novel obstacle avoidance algorithm: follow the gap method. Robot. Auton. Syst. 60(9), 1123–1134 (2012)
5. Chen, X., Li, Y.: Smooth path planning of a mobile robot using stochastic particle swarm optimization. In: Proceedings of the 2006 IEEE International Conference on Mechatronics and Automation, pp. 1722–1727. IEEE (2006)