1. Verma, D., Jana, A., & Ramamritham, K. (2019). Artificial intelligence and human senses for the evaluation of urban surroundings. In W. Karwowski & T. Ahram (Eds.), Intelligent human systems integration (Vol. 722, pp. 852–857). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-73888-8.
2. Nasar, J. L. (1989). Perception, cognition, and evaluation of urban places. In I. Altman & E. H. Zube (Eds.), Public places and spaces (pp. 31–56). Boston, MA: Springer US. https://doi.org/10.1007/978-1-4684-5601-1_3.
3. Dubey, A., Naik, N., Parikh, D., Raskar, R., & Hidalgo, C. A. (2016). Deep learning the city: Quantifying urban perception at a global scale. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). LNCS (Vol. 9905, pp. 196–212). https://arxiv.org/abs/1608.01769.
4. Larkin, A., & Hystad, P. (2018). Evaluating street view exposure measures of visible green space for health research. Journal of Exposure Science and Environmental Epidemiology, 1–10. https://doi.org/10.1038/s41370-018-0017-1.
5. Li, X., & Ratti, C. (2018). Mapping the spatial distribution of shade provision of street trees in Boston using Google street view panoramas. Urban Forestry & Urban Greening, 31, 109–119. https://doi.org/10.1016/j.ufug.2018.02.013.