Abnormal Detecting over Data Stream Based on Maximal Pattern Mining Technology
Author:
Publisher
Springer Singapore
Link
http://link.springer.com/content/pdf/10.1007/978-981-13-3044-5_27
Reference18 articles.
1. Cao, L., Yang, D., Wang, Q., Yu, Y., Wang, J.: Scalable distance-based outlier detection over high-volume data streams. In: 30th International Conference on Data Engineering, Chicago, USA, pp. 76–87. IEEE (2014)
2. Kontaki, M., Gounaris, A., Papadopoulos, A.N., Tsichlas, K., Manolopoulos, Y.: Efficient and flexible algorithms for monitoring distance-based outliers over data streams. Inf. Syst. 55, 37–53 (2016)
3. Bai, M., Wang, X., Xin, J., Wang, G.: An efficient algorithm for distributed density-based outlier detection on big data. Neurocomputing 181, 19–28 (2016)
4. Tang, B., He, H.: A local density-based approach for outlier detection. Neurocomputing 241, 171–180 (2017)
5. de Vries, T., Chawla, S., Houle, M.E.: Density-preserving projections for large-scale local anomaly detection. Knowl. Inf. Syst. 32(1), 25–52 (2012)
Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. MWFP-outlier: Maximal weighted frequent-pattern-based approach for detecting outliers from uncertain weighted data streams;Information Sciences;2022-04
2. An efficient approach for outlier detection from uncertain data streams based on maximal frequent patterns;Expert Systems with Applications;2020-12
3. MiFI-Outlier: Minimal infrequent itemset-based outlier detection approach on uncertain data stream;Knowledge-Based Systems;2020-03
4. Minimal Rare-Pattern-Based Outlier Detection Method for Data Streams by Considering Anti-monotonic Constraints;Lecture Notes in Computer Science;2020
5. A Minimum Rare-Itemset-Based Anomaly Detection Method and Its Application on Sensor Data Stream;Computer Supported Cooperative Work and Social Computing;2019
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3