1. ElSeddawy, A.I., Karim, F.K., Hussein, A.M., Khafaga, D.S.: Predictive analysis of diabetes risk with class imbalance. Comput. Intell. Neurosci. 2022, 3078025 (2022)
2. Zhang, P., Zhang, X., Brown, J., et al.: Global healthcare expenditure on diabetes for 2010 and 2030. Diabetes Res. Clin. Pract. 87, 293–301 (2010). https://doi.org/10.1016/j.diabres.2010.01.026
3. Feurer, M., Klein, A., Eggensperger, K., Springenberg, J.T., Blum, M., Hutter, F.: Efficient and robust automated machine learning. In: Advances in Neural Information Processing Systems, pp. 2962–2970 (2015). Author, F., Author, S.: Title of a proceedings paper. In: Editor, F., Editor, S. (eds.) Conference 2016, LNCS, vol. 9999, pp. 1–13. Springer, Heidelberg. (2016)
4. Kaleem, H., Liaqat, S., Hassan, M.T., Mehmood, A., Ahmad, U., Ditta, A.: An Intelligent Healthcare system for detecting diabetes using machine learning algorithms. Lahore Garrison Univ. Res. J. Comput. Sci. Inf. Technol. 6(03), 1–11 (2022)
5. Voinsky, I., Fridland, O.Y., Aran, A., Frye, R.E., Gurwitz, D.: Machine learning-based blood RNA signature for diagnosis of autism spectrum disorder. Int. J. Mol. Sci. 24(3), 2082 (2023)