1. Allix, K., Bissyandé, T.F., Jérome, Q., Klein, J., State, R., Le Traon, Y.: Large-scale machine learning-based malware detection: confronting the “10-fold cross validation” scheme with reality. In: Proceedings of the 4th ACM Conference on Data and Application Security and Privacy. CODASPY ’14, ACM, New York, NY, USA, pp. 163–166 (2014).
http://doi.acm.org/10.1145/2557547.2557587
2. Bilar, D.: Opcodes as predictor for malware. Int. J. Electron. Secur. Digit. Forensic 1(2), 156–168 (2007).
http://dx.doi.org/10.1504/IJESDF.2007.016865
3. Bowen, B.M., Prabhu, P.V., Kemerlis, V.P., Sidiroglou, S., Stolfo, S.J., Keromytis, A.D.: Methods, systems, and media for detecting covert malware (2018).
http://www.freepatentsonline.com/9971891.html
4. Canto, J., Dacier, M., Kirda, E., Leita, C.: Large scale malware collection: lessons learned. In: SRDS 2008, 27th International Symposium on Reliable Distributed Systems, October 6–8, 2008, Napoli, Italy. Napoli, ITALY (2008).
http://www.eurecom.fr/publication/2648
5. Corporation, S.: Internet Security Threat Report. Technical report ((Date last accessed 31-May-2018)) (2017).
https://www.symantec.com/content/dam/symantec /docs/reports/istr-22-2017-en.pdf