An Efficient Detection of Malware by Naive Bayes Classifier Using GPGPU

Author:

Sahay Sanjay K.,Chaudhari Mayank

Publisher

Springer Singapore

Reference26 articles.

1. Allix, K., Bissyandé, T.F., Jérome, Q., Klein, J., State, R., Le Traon, Y.: Large-scale machine learning-based malware detection: confronting the “10-fold cross validation” scheme with reality. In: Proceedings of the 4th ACM Conference on Data and Application Security and Privacy. CODASPY ’14, ACM, New York, NY, USA, pp. 163–166 (2014). http://doi.acm.org/10.1145/2557547.2557587

2. Bilar, D.: Opcodes as predictor for malware. Int. J. Electron. Secur. Digit. Forensic 1(2), 156–168 (2007). http://dx.doi.org/10.1504/IJESDF.2007.016865

3. Bowen, B.M., Prabhu, P.V., Kemerlis, V.P., Sidiroglou, S., Stolfo, S.J., Keromytis, A.D.: Methods, systems, and media for detecting covert malware (2018). http://www.freepatentsonline.com/9971891.html

4. Canto, J., Dacier, M., Kirda, E., Leita, C.: Large scale malware collection: lessons learned. In: SRDS 2008, 27th International Symposium on Reliable Distributed Systems, October 6–8, 2008, Napoli, Italy. Napoli, ITALY (2008). http://www.eurecom.fr/publication/2648

5. Corporation, S.: Internet Security Threat Report. Technical report ((Date last accessed 31-May-2018)) (2017). https://www.symantec.com/content/dam/symantec /docs/reports/istr-22-2017-en.pdf

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Malware Detection and Classification with Machine Learning Algorithms;Lecture Notes in Networks and Systems;2024

2. Malware Analysis Using RNN and Naive Bayes Algorithm;2023 Intelligent Computing and Control for Engineering and Business Systems (ICCEBS);2023-12-14

3. Machine Learning Algorithm for Malware Detection: Taxonomy, Current Challenges, and Future Directions;IEEE Access;2023

4. Improving Classification Performance for Malware Detection Using Genetic Programming Feature Selection Techniques;Journal of Applied Security Research;2022-05-01

5. Forensic Malware Identification Using Naive Bayes Method;2020 International Conference on Information Technology Systems and Innovation (ICITSI);2020-10-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3