Author:
Pal Souvik,Maity Saikat,Adhikari Saurabh,Alkhafaji Mohammed Ayad,Díaz Vicente García
Publisher
Springer Nature Singapore
Reference24 articles.
1. Melekoodappattu, J. G., Subbian, P. S., & Queen, M. F. (2021). Detection and classification of breast cancer from digital mammograms using hybrid extreme learning machine classifier. International Journal of Imaging Systems and Technology, 31(2), 909–920.
2. Huang, H., Feng, X. A., Zhou, S., Jiang, J., Chen, H., Li, Y., & Li, C. (2019). A new fruit fly optimization algorithm enhanced support vector machine for diagnosis of breast cancer based on high-level features. BMC Bioinformatics, 20(8), 1–14.
3. Prakash, R. M., Bhuvaneshwari, K., Divya, M., Sri, K. J., & Begum, A. S. (2017). Segmentation of thermal infrared breast images using K-means, FCM, and EM algorithms for breast cancer detection. In 2017 International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS) (pp. 1–4). IEEE.
4. Kannan, S. R., Ramathilagam, S., Devi, R., & Sathya, A. (2011). Robust kernel FCM in segmentation of breast medical images. Expert Systems with Applications, 38(4), 4382–4389.
5. Hassanien, A. E., Moftah, H. M., Azar, A. T., & Shoman, M. (2014). MRI breast cancer diagnosis hybrid approach using adaptive ant-based segmentation and multilayer perceptron neural networks classifier. Applied Soft Computing, 14, 62–71.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献