Author:
Saeed Soobia,Hussain Manzoor,Naqvi Mehmood,Sabah Hawraa Ali
Publisher
Springer Nature Singapore
Reference24 articles.
1. Shi, H., Luo, Y., Xu, C., & Wen,Y. (2018). C.M.I. Manifold regularized transfer distance metric learning. In Proceeding: BMVC, Swansea, UK (pp. 158–168).
2. Rippel, O., Paluri, M., Dollar, P., & Bourdev, P. (2015). Metric learning with adaptive density discrimination. Arxiv Preprint, 1(1), 1–15.
3. Xiong, F., Kam, M., Hrebien, L., Wang, B., & Qi, Y. (2016). Kernelized information-theoretic metric learning for cancer diagnosis using high-dimensional molecular profiling data. ACM Transactions on Knowledge Discovery from Data (TKDD), 10(2), 1–23.
4. Kapoor, R., & Gupta, R. (2015). Morphological mapping for non-linear dimensionality reduction. IET Computer Vision, 9(5), 226–233.
5. Wu, Z., Efros, A. A., & Yu, S. X. (2018). Improving generalization via scalable neighborhood component analysis. In Proceedings of the European Conference on Computer Vision (ECCV) (pp. 685–701).