Publisher
Springer Nature Singapore
Reference24 articles.
1. Boukerche, A., Zheng, L., & Alfandi, O. (2020). Outlier detection: Methods, models, and classification. ACM Computing Surveys, 53 (3) (2020). https://doi.org/10.1145/3381028
2. Navarro-Esteban, P., & Cuesta-Albertos, J. A. (2021). High-dimensional outlier detection using random projections. TEST. https://doi.org/10.1007/s11749-020-00750-y
3. Eskin, E. (2008). Anomaly detection over noisy data using learned probability distributions. In Proceedings of the Seventeenth International Conference on Machine Learning (pp. 255–262).
4. Tang, B., & He, H. (2017). A local density-based approach for outlier detection. Neurocomputing, 241, 171–180. https://doi.org/10.1016/j.neucom.2017.02.039
5. Ma, M. X., Ngan, H. Y., & Liu, W. (2016). Density-based outlier detection by local outlier factor on largescale traffic data. Electronic Imaging, 14, 1–4. https://doi.org/10.2352/issn.2470-1173.2016.14.ipmva-385