COVID-19-Related Communication on Twitter: Analysis of the Croatian and Polish Attitudes
Author:
Publisher
Springer Singapore
Link
https://link.springer.com/content/pdf/10.1007/978-981-16-1781-2_35
Reference19 articles.
1. Beigi G, Hu X, Maciejewski R, Liu H (2016) An overview of sentiment analysis in social media and its applications in disaster relief. In: Sentiment analysis and ontology engineering. Springer, Berlin, pp 313–340. https://doi.org/10.1007/978-3-319-30319-2_13
2. Chandrasekaran R, Mehta V, Valkunde T, Moustakas E (2020) Topics, trends, and sentiments of tweets about the covid-19 pandemic: temporal infoveillance study. J Med Internet Res 22(10):e22–624. https://doi.org/10.2196/22624
3. Chen Y. Skiena S (2014) Building sentiment lexicons for all major languages. In: Proceedings of the 52nd annual meeting of the association for computational linguistics (volume 2: short papers), pp 383–389. https://doi.org/10.3115/v1/P14-2063
4. Jakopović H, Mikelić Preradović N (2016) Identifikacija online imidža organizacija temeljem analize sentimenata korisnički generiranog sadržaja na hrvatskim portalima. Medijska istraživanja: znanstveno-stručni časopis za novinarstvo i medije 22(2):63–82. https://doi.org/10.22572/mi.22.2.4
5. Jarynowski A (2020) A dataset of media releases (Twitter, News and Comments, Youtube, Facebook) form Poland related to COVID-19 for open research. Zenodo. https://doi.org/10.5281/zenodo.4319813
Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Recursively Autoregressive Autoencoder for Pyramidal Text Representation;IEEE Access;2024
2. First Insight into Social Media User Sentiment Spreading Potential to Enhance the Conceptual Model for Disinformation Detection;Data Science—Analytics and Applications;2024
3. Prediction of COVID-19 tweeting: classification based on graph neural networks;2022 45th Jubilee International Convention on Information, Communication and Electronic Technology (MIPRO);2022-05-23
4. Topic Modeling for Tracking COVID-19 Communication on Twitter;Communications in Computer and Information Science;2022
5. Infoveillance of the Croatian Online Media During the COVID-19 Pandemic: One-Year Longitudinal Study Using Natural Language Processing;JMIR Public Health and Surveillance;2021-12-24
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3