Classification of Smartphone Users Based on Demographic and Technological Properties
Author:
Manellanga RajithaORCID, Dayaratna ErunikaORCID
Publisher
Springer Singapore
Reference11 articles.
1. Felbo B, Sundsøy P, Pentland A, Lehmann S, de Montjoye YA (2017) Modeling the temporal nature of human behavior for demographics prediction. In: Altun Y, Das K, Mielikäinen T, Malerba D, Stefanowski J, Read J, Žitnik M, Ceci M, Džeroski S (eds) Machine learning and knowledge discovery in databases 2017. LNSC, vol 10536, pp 140–152. Springer, Cham. https://doi.org/10.1007/978-3-319-71273-4_12 2. Zufiria PJ, Pastor-Escuredo D, Úbeda-Medina L, Hernandez-Medina MA, Barriales-Valbuena I, Morales AJ, Jacques DC, Nkwambi W, Diop MB, Quinn J, Hidalgo-Sanchís P, Luengo-Oroz M (2018) Identifying seasonal mobility profiles from anonymized and aggregated mobile phone data. Application in food security. PLoS ONE 13(4):e0195714. https://doi.org/10.1371/journal.pone.0195714 3. Wesolowski A, Eagle N, Tatem AJ, Smith DL, Noor AM, Snow RW, Buckee CO (2012) Quantifying the impact of human mobility on malaria. Science 338(6104):267–270. https://doi.org/10.1126/science.1223467 4. Anagnostopoulos T, Anagnostopoulos C, Hadjiefthymiades S, Kyriakakos M, Kalousis A (2009) Predicting the location of mobile users. In: Proceedings of the 2009 international conference on pervasive services -ICPS ‘09, pp 65–72. Association for Computing Machinery, New York. https://doi.org/10.1145/1568199.1568210 5. Okazaki S (2006) What do we know about mobile Internet adopters? A Clust Anal Inf Manag 43(2):127–141. https://doi.org/10.1016/j.im.2005.05.001
|
|