Leveraging Deep Learning for Anomaly Detection in Video Surveillance

Author:

Kavikuil K.,Amudha J.

Publisher

Springer Singapore

Reference13 articles.

1. Dinesh Kumar Saini, Dikshika Ahir and Amit Ganatra.: Techniques and Challenges in Building Intelligent Systems: Anomaly Detection in Camera Surveillances’. Satapathy and S. Das (eds.), Springer International Publishing Switzerland 2016, Proceedings of First International Conference on Information and Communication Technology for Intelligent Systems: Volume 2, Smart Innovation, Systems and Technologies (2016).

2. A. Krizhevsky, I. Sutskever, G. E. Hinton.: ImageNet classification with deep convolutional neural network: Advances Neural Information Processing Systems (2012).

3. R. Ramachandran, Rajeev, D. C., Krishnan, S. G., and Subathra P.: Deep learning – An overview: International Journal of Applied Engineering Research, vol. 10, pp. 25433–25448, (2015).

4. Da Zhang, Hamid Maei, Xin Wang, and Yuan-Fang Wang: Deep Reinforcement Learning for Visual Object Tracking in Videos, Department of Computer Science, University of California at Santa Barbara, Samsung Research America. (2017).

5. K. Nithin. D and Dr. Bhagavathi Sivakumar P.: Learning of Generic Vision Features Using Deep CNN: In 2015 Fifth International Conference on Advances in Computing and Communications (ICACC), Kochi, (2015).

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Comparative Analysis of Machine Learning Algorithms for Anomaly Detection;2024 IEEE 9th International Conference for Convergence in Technology (I2CT);2024-04-05

2. Distressful movement recognition from surveillance video by deep learning method;AIP Conference Proceedings;2024

3. Anomalous Human Action Monitoring in Video Images Using RPCA-MFTSL AND PSO-CNN;SN Computer Science;2023-12-18

4. Comparative Model: Video Based Fire Detection;2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT);2023-07-06

5. Vision-based outlier detection techniques in automated surveillance: a survey and future ideas;Multimedia Tools and Applications;2023-07-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3