Author:
Jagdale Jayashree,Reha Ali Yawar,Emmanuel M.
Publisher
Springer Nature Singapore
Reference7 articles.
1. Tan S et al (2014) Interpreting the public sentiment variations on twitter. IEEE Trans Knowl Data Eng 26(5):1158–1170
2. Pang B, Lee L (2008) Opinion mining and sentiment analysis. Found Trends Inf Retr 2(1–2):1–135
3. Clarizia F, Colace F, Pascale F, Lombardi M, Santaniello D (2019) Sentiment analysis in social networks: a methodology based on the latent dirichlet allocation approach. In: 11th conference of the European society for fuzzy logic and technology (EUSFLAT 2019), Atlantis Press, pp 241–248
4. Ye J, Jing X, Li J (2018) Sentiment analysis using modified LDA. In: Sun S, Chen N, Tian T (eds) Signal and ınformation processing, networking and computers. ICSINC 2017. Lecture notes in electrical engineering, vol 473. Springer, Singapore. https://doi.org/10.1007/978-981-10-7521-6_25
5. Gautam G, Yadav D (2014) Sentiment analysis of twitter data using machine learning approaches and semantic analysis. 2014 Seventh international conference on contemporary computing (IC3), IEEE
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献