Author:
Satyanarayana Gunupusala,Chatrapathi Kaila Shahu
Publisher
Springer Nature Singapore
Reference30 articles.
1. G. Haixiang, L. Yijing, J. Shang, G. Mingyun, H. Yuanyue, G. Bing, Learning from class imbalanced data: review of methods and applications. Elsevier J. Expert Syst. Appl. 73, 220–239 (2017)
2. B. Krawcyk, Learning from imbalanced data: open challenges and future directions. Springer Review (2016)
3. B. Krawczyk, M. Galar, Ł. Jelen, F. Herrera, Evolutionary undersampling boosting for imbalanced classification of breast cancer malignancy. Appl. Soft Comput. 38, 714–726 (2016)
4. B.W. Yap, K. Abd Rani, H.A. Abd Rahman, S. Fong, Z. Khairudin, Abdullah, in Proceedings of the first International Conference on Advanced Data and Information engineering (2013)
5. M. Galar, A. Fernandez, E. Barrenechea, H. Bustince, F. Herrera, A review on ensembles for the class imbalance problem: bagging-, boosting-, and hybrid-based approaches. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) (2011)