Health Monitoring of Wind Turbine Blades Through Vibration Signal Using Machine Learning Techniques
Author:
Publisher
Springer Singapore
Link
https://link.springer.com/content/pdf/10.1007/978-981-33-4084-8_22
Reference13 articles.
1. Zhang P, Lu D (2019) A survey of condition monitoring and fault diagnosis toward integrated o&m for wind turbines. Energies 12:2801
2. Ellabban O, Abu-Rub H, Blaabjerg F (2014) Renewable energy resources: current status, future prospects and their enabling technology. Renew Sustain Energy Rev 39:748–764
3. Liu WY, Tang BP, Han JG, Lu XN, Hu NN, He ZZ (2015) The structure healthy condition monitoring and fault diagnosis methods in wind turbines: a review. Renew Sustain Energy Rev 44:466–472
4. Joshuva A, Sugumaran V (2017) A data driven approach for condition monitoring of wind turbine blade using vibration signals through best-first tree algorithm and functional trees algorithm: a comparative study. ISA (Instrum Soc Am) Trans 67:160–172
5. Joshuva A, Sugumaran V (2017) Fault diagnosis for wind turbine blade through vibration signals using statistical features and random forest algorithm. IJPT 9
Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Enhanced Fault Detection of Wind Turbine Using eXtreme Gradient Boosting Technique Based on Nonstationary Vibration Analysis;Journal of Failure Analysis and Prevention;2024-02-27
2. Devising a Vibration-Based Fault Detection System for Textile Machinery;Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering;2023
3. A neural networking based fault detection system for pitch and yaw control of a HAWT under different operating conditions;Energy Reports;2022-11
4. Multi-Fault Detection and Classification of Wind Turbines Using Stacking Classifier;Sensors;2022-09-14
5. An Assessment on Condition Monitoring of Automobile Gearbox through Naïve Bayes Approach using Statistical Features;2022 International Conference on Electronics and Renewable Systems (ICEARS);2022-03-16
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3