Vehicle Collision Prediction Model on the Internet of Vehicles

Author:

Qian Shenghua

Abstract

AbstractAn active collision prediction model on the Internet of Vehicles is proposed. Through big data calculation on the cloud computing platform, the model predicts whether the vehicles may collide and the time of the collision, so the server actively sends warning signals to the vehicles that may collide. Firstly, the vehicle collision prediction model preprocesses the data set, and then constructs a new feature set through feature engineering. For the imbalance of the data set, which affects predictive results, SMOTE algorithm is proposed to generate new samples. Then, the LightGBM algorithm optimized by Bayesian parameters is used to predict the vehicle collision state. Finally, for the problem of low accuracy in predicting the collision time, the time prediction is transformed into a classification problem, and the Bayesian optimization K-means algorithm is used to predict the vehicle collision time. The experimental results prove that the vehicle collision prediction model proposed in this paper has better results.

Publisher

Springer Nature Singapore

Reference15 articles.

1. Litman, T., Doherty, E.: Transportation Cost and Benefit Analysis II–Vehicle Costs. Victoria Transport Policy Institute (VTPI) (2015). http://www.vtpi.org. Accessed 2009

2. Contreras-Castillo, J., Zeadally, S., Guerrero-Ibañez, J.A.: Internet of vehicles: architecture, protocols, and security. IEEE Internet Things J. 5(5), 3701–3709 (2017)

3. Mai, A.: The internet of cars, spawning new business models (2012). https://www.slideshare.net/AndreasMai/12-1024scvgsmaciscoperspectivef

4. Jun, Z.: Study on Driving Behavior Recognition and Risk Assessment Based on Internet of Vehicle Data. University of Science and Technology of China (2020)

5. Xu, W., Zhou, H., Cheng, N., et al.: Internet of vehicles in big data era. IEEE/CAA J. Automatica Sinica 5(1), 19–35 (2017)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analyzing Inter-Vehicle Collision Predictions during Emergency Braking with Automated Vehicles;2023 19th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob);2023-06-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3