A Method for Obtaining Highly Robust Memristor Based Binarized Convolutional Neural Network

Author:

Huang Lixing,Diao Jietao,Teng Shuhua,Li Zhiwei,Wang Wei,Liu Sen,Li Minghou,Liu Haijun

Abstract

AbstractRecently, memristor based binarized convolutional neural network has been widely investigated owing to its strong processing capability, low power consumption and high computing efficiency.However, it has not been widely applied in the field of embedded neuromorphic computing for manufacturing technology of the memristor being not mature. With respect to this, we propose a method for obtaining highly robust memristor based binarized convolutional neural network. To demonstrate the performance of the method, a convolutional neural network architecture with two layers is used for simulation, and the simulation results show that binarized convolutional neural network can still achieve more than 96.75% recognition rate on MNIST dataset under the condition of 80% yield of the memristor array, and the recognition rate is 94.53% when the variation of memristance is 26%, and it is 94.66% when the variation of the neuron output is 0.8.

Publisher

Springer Nature Singapore

Reference15 articles.

1. Courbariaux, M., Hubara, I., Soudry, D., El-Yaniv, R., Bengio, Y.: Binarized Neural Networks: Training Deep Neural Networks with Weights and Activations Constrained to +1 or -1 (2016)

2. Courbariaux, M., Bengio, Y., David, J.-P.: BinaryConnect: training deep neural networks with binary weights during propagations. Adv. Neural Inf. Process. Syst. 28 (2015)

3. Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A.: XNOR-Net: imagenet classification using binary convolutional neural networks. Computer Vision - Eccv 2016, Pt Iv (2016)

4. Qiao, G.C., Hu, S.G., Chen, T.P., et al.: STBNN: Hardware-friendly spatio-temporal binary neural network with high pattern recognition accuracy. Neurocomputing 409, 351–360 (2020)

5. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Commun. ACM 60(6), 84–90 (2017)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3