Cross-Knowledge Graph Entity Alignment via Neural Tensor Network

Author:

Wang Jingchu,Liu Jianyi,Chen Feiyu,Lu Teng,Huang Hua,Zhao Jinmeng

Abstract

AbstractWith the expansion of the current knowledge graph scale and the increase of the number of entities, a large number of knowledge graphs express the same entity in different ways, so the importance of knowledge graph fusion is increasingly manifested. Traditional entity alignment algorithms have limited application scope and low efficiency. This paper proposes an entity alignment method based on neural tensor network (NtnEA), which can obtain the inherent semantic information of text without being restricted by linguistic features and structural information, and without relying on string information. In the three cross-lingual language data sets DBPFR−EN, DBPZH−EN and DBPJP−EN of the DBP15K data set, Mean Reciprocal Rank and Hits@k are used as the alignment effect evaluation indicators for entity alignment tasks. Compared with the existing entity alignment methods of MTransE, IPTransE, AlignE and AVR-GCN, the Hit@10 values of the NtnEA method are 85.67, 79.20, and 78.93, and the MRR is 0.558, 0.511, and 0.499, which are better than traditional methods and improved 10.7% on average.

Publisher

Springer Nature Singapore

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3