Deep Neural Network for Prediction of Adsorbent Selectivity on Hydrogen Purification

Author:

Li Chenglong,Xie Chengsi,Zong Yi,Chahine Richard,Yang Tianqi,Ye Feng,Xiao Jinsheng

Abstract

AbstractWith emergence of new materials, more and more materials are available for adsorption and separation processes. The adsorption selectivity of adsorbent to adsorbate is one of the important indicators in choosing materials. Because the adsorption experiment of the mixture is time-consuming and difficult, the selectivity of the adsorbent is generally calculated by the ideal adsorbed solution theory (IAST). Taking the CO2/H2 gas mixture as an example, this paper proposes a new adsorption selectivity calculation method based on a deep neural network (DNN) with 5 hidden layers, which takes the molar fraction of CO2, adsorption pressure and Langmuir adsorption isotherm parameters as the inputs of DNN. Combining the DNN and the NIST/ARPA-E database to quickly and accurately calculate the adsorption selectivity, the hydrogen purification and carbon dioxide storage materials can be quickly screened.

Publisher

Springer Nature Singapore

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3