The Preparation of Iridium-Based Catalyst with Different Melting Point-Metal Nitrate and Its OER Performance in Acid Media

Author:

Deng Jiayao,Hu Xiao,Xu Gnauizhi,Deng Zhanfeng,Yang Lan,Chen Ding,Zhou Ming,Tian Boyuan

Abstract

AbstractOxygen evolution reaction (OER) is the main factor limiting the large-scale development of proton-exchange membrane (PEM) hydrogen production. It is urgent to develop catalysts with excellent OER catalytic performance and stability. Herein, several Iridium-based catalysts were prepared by simple mixing and calcination, the OER properties of catalysts with different melting points of nitrates as calcinating additives were investigated. The RbNO3 treated catalyst displayed a low overpotential(η) of 297.6 mV versus RHE, which is lower than the catalyst calcinated without nitrate (323.8 mV vs. RHE). Moreover, the RbNO3 treated catalyst displayed good acid stability over 20 h Chronopotentiometric test. The high OER catalytic activity and stability of RbNO3 treated catalyst may be attribute to the smaller nanoparticle morphology, pure IrO2 structure and high electrochemical surface area (ECSA), which increase the number of active sites and the intrinsic catalytic activity. This work indicated that the catalyst with excellent OER performance can be obtained by selecting nitrate with moderate melting point as the calcinating additive. Nitrates (like RbNO3) treated catalyst with excellent catalytic activity and stability has good application prospect in hydrogen production of PEM water splitting.

Publisher

Springer Nature Singapore

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3