1. Ajmal, M., Ahmad, F., Naseer, M., & Jamjoom, M. (2019). Recognizing human activities from video using weakly supervised contextual features. IEEE Access, 7, 98420–98435. https://doi.org/10.1109/ACCESS.2019.2929262.
2. Albert, L., Ramkiran, G., & Julio, C. (2020). Generation and classification of activity sequences for spatiotemporal modeling of human populations. Online Journal of Public Health Informatics, 12(1). https://doi.org/10.5210/ojphi.v12i1.10588
3. Alsheikh, M. A., Selim, A., Niyato, D., Doyle, L., Lin, S., & Tan, H. P. (2015). Deep activity recognition models with triaxial accelerometers. CoRR abs/1511.04664. http://arxiv.org/abs/1511.04664
4. American Time Use Survey (ATUS). (2015). Statistics USdolbotl, United States (2016)
5. Anguita, D., Ghio, A., Oneto, L., Parra, X., & Reyes-Ortiz, J. L. (2013). A public domain dataset for human activity recognition using smartphones. In European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning.