Leveraging Variational Autoencoder for Improved Construction Progress Prediction Performance

Author:

Mostofi Fatemeh,Tokdemir Onur Behzat,Toğan Vedat

Abstract

AbstractThe imbalanced construction dataset reduces the accuracy of the machine learning model. This issue that addressed by recent construction management research through different sampling approaches. Despite their advantages, the utilized sampling approaches are reducing the reliability of the prediction model, while posing the risk of artificial bias. The objective of this study is to address the challenge of imbalanced datasets in construction progress prediction models using a novel variational autoencoder (VAE) that generates synthetic data for underrepresented classes. The VAE's encoder-decoder architecture, along with its latent space components, is optimized for this task. A comparative analysis using decision tree-based ML models, including grid search optimization, substantiated the effectiveness of the VAE approach. The results indicate that the hybrid dataset benefited the ML models from the addition of the synthesized dataset, showing 2% improvements in performance metrics across most models. The synthetic data generated by VAEs contributes to the construction of more balanced datasets, which, in turn, can lead to more reliable and accurate predictive models. The enhanced accuracy of the VAE-ML model addresses the class imbalance problem and improves the reliability of construction productivity predictions and related resource allocation plans.

Publisher

Springer Nature Singapore

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3