Author:
Shah Deep,Barve Amit,Vala Brijesh,Gandhi Jay
Publisher
Springer Nature Singapore
Reference14 articles.
1. Zhou T, Canu S, Vera P, Ruan S (2021) Latent correlation representation learning for brain tumor segmentation with missing MRI modalities. IEEE Trans Image Process 30:4263–4274
2. Zhu, Y., Wang, S., Lin, R., Hu, Y., & Chen, Q. (2021, April). Brain tumor segmentation for missing modalities by supplementing missing features. In 2021 IEEE 6th International Conference on Cloud Computing and Big Data Analytics (ICCCBDA) (pp. 652–656). IEEE.
3. Azad, R., Khosravi, N., Dehghanmanshadi, M., Cohen-Adad, J., & Merhof, D. (2022). Medical image segmentation on mri images with missing modalities: A review. arXiv preprint arXiv:2203.06217.
4. Lau, K., Adler, J., & Sjölund, J. (2019). A unified representation network for segmentation with missing modalities. arXiv preprint arXiv:1908.06683.
5. Zhang J, Zeng J, Qin P, Zhao L (2021) Brain tumor segmentation of multi-modality MR images via triple intersecting U-Nets. Neurocomputing 421:195–209