Real-Time Power Quality Disturbance Classification Using Convolutional Neural Networks
Author:
Publisher
Springer Singapore
Link
https://link.springer.com/content/pdf/10.1007/978-981-33-4597-3_64
Reference18 articles.
1. Luo L et al (2017) Design and application of power quality monitoring system for the smart substation based on IEC 61850. CIRED-Open Access Proc J 2017(1):577–580
2. Bollen MH, Gu IY (2006) Signal processing of power quality disturbances, vol 30. Wiley, New Jersey
3. Mishra M (2019) Power quality disturbance detection and classification using signal processing and soft computing techniques: a comprehensive review. Int Trans Electr Energy Syst 29(8):e12008
4. Li J et al (2016) Detection and classification of power quality disturbances using double resolution S-transform and DAG-SVMs. IEEE Trans Instrum Meas 65(10):2302–2312
5. Wang J, Xu Z, Che Y (2019) Power quality disturbance classification based on DWT and multilayer perceptron extreme learning machine. Appl Sci 9(11):2315
Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Space-Vector Neural Networks: Efficient Learning From Three-Phase Electrical Waveforms;IEEE Transactions on Smart Grid;2024-09
2. Power Quality Transient Disturbance Diagnosis Based on Dynamic Large Convolution Kernel and Multi-Level Feature Fusion Network;Energies;2024-07-01
3. Deep Convolutional Neural Network for Multiple Smart Grid Event Classification through Sliding Windows;2024 International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA);2024-05-21
4. Clark-Park Transformation based Autoencoder for 3-Phase Electrical Signals;2023 IEEE PES Innovative Smart Grid Technologies Europe (ISGT EUROPE);2023-10-23
5. An image-based deep transfer learning approach to classify power quality disturbances;Electric Power Systems Research;2022-12
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3