1. Wangh, Z., Li, H., Wu, H.L., et al.: Improving maneuver strategy in air combat by alternate freeze games with a deep reinforcement learning algorithm. Math. Probl. Eng. 22(1), 1–17 (2020)
2. Ma, W., Li, H., Wang, Z., et al.: Close air combat maneuver decision based on deep stochastic game. Syst. Eng. Electron. 43(2), 443–451 (2021)
3. Li, X.G., Li, Q.: Technical analysis of typical intelligent game system and development prospect of intelligent command and control system. Chin. J. Intell. Sci. Technol. 2(1), 36–42 (2020)
4. Pope, A.P., Ide, J.S., Micovic, D., et al.: Hierarchical Reinforcement Learning for Air-to-Air Combat[DB/OL]. arXiv: 2105.00990 (2021)
5. Sufiyan, D., Win, L., Win, S., et al.: A reinforcement learning approach for control of a nature-inspired aerial vehicle. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 6030–6036. IEEE, Piscataway (2019)