Author:
Devi S. Prasanna,Manivannan S.,Arunnehru J.
Publisher
Springer Nature Singapore
Reference12 articles.
1. Ross, P. J., & Ross, P. J. (1988). Taguchi techniques for quality engineering: loss function, orthogonal experiments, parameter and tolerance design. Number TS156 R12. McGraw-Hill.
2. Rajarasalnath, S., Balasubramanian, K., & Rajeswari, N. (2015). Multi-objective optimization problems in taguchi parameter design–A literature review. Applied Mechanics and Materials, 813, 1188–1192.
3. Gupta, A., Singh, H., & Aggarwal, A. (2011). Taguchi-fuzzy multi output optimization (MOO) in high speed cnc turning of aisi p-20 tool steel. Expert Systems with Applications, 38(6), 6822–6828.
4. Ho, W.-H., Tsai, J.-T., Lin, B.-T., & Chou, J.-H. (2009). Adaptive network-based fuzzy inference system for prediction of surface roughness in end milling process using hybrid taguchi-genetic learning algorithm. Expert Systems with Applications, 36(2), 3216–3222.
5. Sangaiah, A. K., Thangavelu, A. K., Gao, X. Z., Anbazhagan, N., & Saleem Durai, M. (2015). An anfis approach for evaluation of team-level service climate in gsd projects using taguchi-genetic learning algorithm. Applied Soft Computing, 30, 628–635.