1. Fernández-Muñoz, J.J., Moguerza, M., Duque, C.M., Bruna, D.G.: A study on the effect of imbalanced data in tourism recommendation models. Int. J. Q. Serv. Sci. 3, 346–356 (2019)
2. Ren, Z., Lin, T., Feng, K., Zhu, Y., Liu, Z., Yan, K.: A systematic review on imbalanced learning methods in intelligent fault diagnosis. IEEE Trans. Instr. Meas. 72, 1–35 (2023)
3. Blanchard, A.E., et al.: A keyword-enhanced approach to handle class imbalance in clinical text classification. IEEE J. Biomed. Health Inform. 6, 2796–2803 (2022)
4. Feng, S., Keung, J., Zhang, P., Xiao, Y., Zhang, M.,: The impact of the distance metric and measure on SMOTE-based techniques in software defect prediction. Inf. Softw. Technol. 142(No.C), 1–14 (2022)
5. Dablain, D., Krawczyk, B., DeepSMOTE, N.C.: DeepSMOTE: fusing deep learning and SMOTE for imbalanced data. IEEE Trans. Neural Netw. Learn. Syst. 99, 1–15 (2022)