1. Demir, E. A. Ç. V., & Sevimli, M. F. (2022). Carbon monoxide forecasting with air quality parameters and fuzzy logic for Konya: A case study of Meram. March, 2020–2023.
2. Singh, S. K., & Kumari, S. (2022). Machine learning-based time series models for effective CO2 emission prediction in India.
3. Noori, R., Hoshyaripour, G., Ashrafi, K., & Araabi, B. N. (2010). Uncertainty analysis of developed ANN and ANFIS models in prediction of carbon monoxide daily concentration. Atmospheric Environment, 44(4), 476–482. https://doi.org/10.1016/j.atmosenv.2009.11.005
4. Kumar, R., Kumar, P., & Kumar, Y. (2020). Time series data prediction using IoT and machine learning technique. Procedia Computer Science, 167(2019), 373–381. https://doi.org/10.1016/j.procs.2020.03.240
5. Guarnaccia, C., Bretón, J. G. C., Quartieri, J., Tepedino, C., & Bretón, R. M. C. (2014). An application of time series analysis for predicting and management of carbon monoxide concentrations. International Journal of Mathematical Models and Methods in Applied Sciences, 8(1), 505–515.