1. Akbari, M., Samadzadegan, F., & Weibel, R. (2015). A generic regional spatio-temporal co-occurrence pattern mining model: a case study for air pollution. Journal of Geographical Systems, 17(3), 249–274.
2. Bao, X., & Wang, L. (2019). A clique-based approach for co-location pattern mining. Information Sciences, 490, 244–264.
3. Celik, M., Kang, J., & Shekhar, S. (2007). Zonal co-location pattern discovery with dynamic parameters. In Proceedings of the 7th IEEE International Conference on Data Mining (ICDM) (pp. 433–438). IEEE Press.
4. Fang, Y., Wang, L., Wang, X., et al. (2017). Mining co-location patterns with dominant features. In: Proceedings of the 18th International Conference on Web Information Systems Engineering (WISE). LNCS, 10569, 183–198.
5. Huang, Y., Pei, J., & Xiong, H. (2006). Mining co-location patterns with rare events from spatial data sets. GeoInformatica, 10(3), 239–260.