1. A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, S. Savarese, Social LSTM: human trajectory prediction in crowded spaces, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016) pp. 961–971
2. F. Weninger, H. Erdogan, S. Watanabe, E. Vincent, J. Le Roux, J.R. Hershey, B. Schuller, Speech enhancement with LSTM recurrent neural networks and its application to noise-robust ASR, in International Conference on Latent Variable Analysis and Signal Separation (Springer, Cham, 2015), pp. 91–99
3. S.H.I. Xingjian, Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, W. Woo, Convolutional LSTM network: a machine learning approach for precipitation nowcasting, in Advances in Neural Information Processing Systems (2015), pp. 802–810
4. H. Liu, X. Mi, Y. Li, Smart multi-step deep learning model for wind speed forecasting based on variational mode decomposition, singular spectrum analysis, LSTM network and ELM. Energy Convers. Manage. 159, 54–64 (2018)
5. K. Greff, R.K. Srivastava, J. Koutník, B.R. Steunebrink, J. Schmidhuber, LSTM: A search space odyssey. IEEE Trans. Neural Netw. Learn. Syst. 28(10), 2222–2232 (2016)