The Classification of Skateboarding Trick Manoeuvres Through the Integration of Image Processing Techniques and Machine Learning
Author:
Publisher
Springer Singapore
Link
https://link.springer.com/content/pdf/10.1007/978-981-15-2317-5_29
Reference10 articles.
1. Corrêa NK, de Lima JCM, Russomano T, dos Santos MA (2017) Development of a skateboarding trick classifier using accelerometry and machine learning. Res Biomed Eng 33:362–369
2. Musa RM, Majeed APA, Taha Z, Chang SW, Nasir AFA, Abdullah MR (2019) A machine learning approach of predicting high potential archers by means of physical fitness indicators. PLOS ONE 14:e0209638
3. Taha Z, Razman MAM, Adnan FA, Majeed APA, Musa RM (2017) The development of the putt. it. in monitoring device and the establishment of its reliability: a solution for putting-in analysis in Golf. Mov Health Exerc 6
4. Taha Z, Wong MY, Yap HJ, Abdullah A, Yeo WK (2018) Evaluation of real time motion tracking accuracy of customised IMU sensor for application in a mobile badminton virtual reality training system. MoHE 7
5. Groh BH, Fleckenstein M, Kautz T, Eskofier BM (2017) Classification and visualization of skateboard tricks using wearable sensors. Pervasive Mobile Comput 40:42–55
Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Enhancing volleyball training: empowering athletes and coaches through advanced sensing and analysis;Frontiers in Sports and Active Living;2024-04-16
2. TXNIP-mediated crosstalk between oxidative stress and glucose metabolism;PLOS ONE;2024-02-08
3. Physical fitness and motor ability parameters as predictors for skateboarding performance: A logistic regression modelling analysis;PLOS ONE;2024-02-08
4. Motion Based Trick Classification in Skateboarding Using Machine Learning;2023 World Symposium on Digital Intelligence for Systems and Machines (DISA);2023-09-21
5. A Cluster Analysis and Artificial Neural Network of Identifying Skateboarding Talents Based on Bio-fitness Indicators;Lecture Notes in Bioengineering;2023
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3