1. McMahan, B., Moore, E., Ramage, D., Hampson, S., Arcas, B.A.y.: Communication-efficient learning of deep networks from decentralized data. In: Singh, A., Zhu, J. (eds.) Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, Proceedings of Machine Learning Research, vol. 54, pp. 1273–1282. PMLR (2017). https://proceedings.mlr.press/v54/mcmahan17a.html
2. Lim, W.Y.B., Luong, N.C., Hoang, D.T., Jiao, Y., Liang, Y.C., Yang, Q., Niyato, D., Miao, C.: Federated learning in mobile edge networks: a comprehensive survey. IEEE Commun. Surv. Tutor. 22(3), 2031–2063 (2020). https://doi.org/10.1109/COMST.2020.2986024
3. Luo, B., Li, X., Wang, S., Huang, J., Tassiulas, L.: Cost-Effective Federated Learning in Mobile Edge Networks (2021)
4. Hard, A., Rao, K., Mathews, R., Ramaswamy, S., Beaufays, F., Augenstein, S., Eichner, H., Kiddon, C., Ramage, D.: Federated Learning for Mobile Keyboard Prediction (2019)
5. Stremmel, J., Singh, A.: Pretraining federated text models for next word prediction. In: Arai, K. (ed.) Advances in Information and Communication, pp. 477–488. Springer International Publishing, Cham (2021)