Cross-domain Self-attentive Sequential Recommendations
Author:
Publisher
Springer Singapore
Link
https://link.springer.com/content/pdf/10.1007/978-981-16-5348-3_48
Reference31 articles.
1. Kang, W.-C., McAuley, J.: Self-attentive sequential recommendation. In: 2018 IEEE International Conference on Data Mining (ICDM), pp. 197–206. IEEE (2018)
2. Fang, H., Zhang, D., Shu, Y., Guo, G.: Deep learning for sequential recommendation: algorithms, influential factors, and evaluations. ACM Trans. Inf. Syst. (TOIS) 39(1), 1–42 (2020)
3. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems. Computer 42(8), 30–37 (2009)
4. Li, B., Yang, Q., Xue, X.: Transfer learning for collaborative filtering via a rating-matrix generative model. In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 617–624 (2009)
5. Gao, S., Luo, H., Chen, D., Li, S., Gallinari, P., Guo, J.: Cross-domain recommendation via cluster-level latent factor model. In: Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Springer, pp. 161–176 (2013)
Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Transfer learning in cross-domain sequential recommendation;Information Sciences;2024-05
2. MCRPL: A Pretrain, Prompt, and Fine-tune Paradigm for Non-overlapping Many-to-one Cross-domain Recommendation;ACM Transactions on Information Systems;2024-02-09
3. DA-DAN: A Dual Adversarial Domain Adaption Network for Unsupervised Non-overlapping Cross-domain Recommendation;ACM Transactions on Information Systems;2023-11-07
4. A Multi-view Graph Contrastive Learning Framework for Cross-Domain Sequential Recommendation;Proceedings of the 17th ACM Conference on Recommender Systems;2023-09-14
5. Cross-Domain Attentive Sequential Recommendations based on General and Current User Preferences (CD-ASR);IEEE/WIC/ACM International Conference on Web Intelligence;2021-12-14
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3