Intrinsic Mode Function Selection and Statistical Information Analysis for Bearing Ball Fault Detection
Author:
Publisher
Springer Singapore
Link
http://link.springer.com/content/pdf/10.1007/978-981-15-1746-4_6
Reference75 articles.
1. Abdelkader, R., Derouiche, Z., Kaddour, A., & Zergoug, M. (2016). Rolling bearing faults diagnosis based on empirical mode decomposition: Optimized threshold de-noising method. In 2016 8th International Conference on Modelling, Identification and Control (ICMIC) (pp. 186–191).
2. Abid, F. B., Zgarni, S., & Braham, A. (2016). Bearing fault detection of induction motor using SWPT and DAG support vector machines. In IECON 2016-42nd Annual Conference of the IEEE Industrial Electronics Society (pp. 1476–1481). IEEE.
3. Afgani, M., Sinanovic, S., & Haas, H. (2008). Anomaly detection using the Kullback-Leibler divergence metric. In 2008 1st International Symposium on Applied Sciences on Biomedical and Communication Technologies (pp. 1–5).
4. Ali, J. B., Fnaiech, N., Saidi, L., Chebel-Morello, B., & Fnaiech, F. (2015). Application of empirical mode decomposition and artificial neural network for automatic bearing fault diagnosis based on vibration signals. Applied Acoustics, 89, 16–27.
5. Amirat, Y., Choqueuse, V., & Benbouzid, M. (2013). EEMD-based wind turbine bearing failure detection using the generator stator current homopolar component. Mechanical Systems and Signal Processing, 41(1), 667–678.
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3