Application of Machine Learning in Determining the Mechanical Properties of Materials
Author:
Publisher
Springer Nature Singapore
Link
https://link.springer.com/content/pdf/10.1007/978-981-19-6278-3_5
Reference106 articles.
1. Agrawal, Choudhary A (2016) Perspective: materials informatics and big data: realization of the “fourth paradigm” of science in materials science. Appl Mater 4:053208
2. Stoll A, Benner P (2021) Machine learning for material characterization with an application for predicting mechanical properties. GAMM-Mitteilungen 44:e202100003. https://doi.org/10.1002/gamm.202100003
3. Hey T, Tansley S, Tolle K (2009) The fourth paradigm: data-intensive scientific discovery. Microsoft Research
4. Chen CLP, Zhang C-Y (2014) Data-Intensive applications, challenges, techniques and technologies: a survey on big data. Inf Sci (Ny) 275:314–347. https://doi.org/10.1016/j.ins.2014.01.015
5. Lusher SJ, McGuire R, van Schaik RC, Nicholson CD, de Vlieg J (2014) Data-driven medicinal chemistry in the era of big data. Drug Discov Today 19(7):859–868. https://doi.org/10.1016/j.drudis.2013.12.004
Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. LatticeML: a data-driven application for predicting the effective Young Modulus of high temperature graph based architected materials;International Journal on Interactive Design and Manufacturing (IJIDeM);2024-07-02
2. Multi‐source data‐driven approach for prediction of melt density during polymer compounding;Polymer Engineering & Science;2024-03-22
3. Active and Passive Solar Distillation—A Detailed Review;Materials Horizons: From Nature to Nanomaterials;2024
4. Applications of Deep Learning for Composites Materials;Hybrid Composite Materials;2024
5. Magnesium based alloys for reinforcing biopolymer composites and coatings: A critical overview on biomedical materials;Advanced Industrial and Engineering Polymer Research;2023-10
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3