Abstract
AbstractStructural applications of composite materials are used in various structures of the oil and gas industry, water supply and sewage systems and a wide range of industries, such as marine, aerospace, and military industries. This paper aims to numerically investigate the influence of local dent caused by an indenter on the buckling behaviour of glass fabric-reinforced polymer cylindrical shells when subjected to external pressure. For this purpose, 24 finite element numerical models with five layers and a stacking sequence [30/-30/30/-30/30] were simulated in ABAQUS. The effect of dent depth (2, 4, 6 and 8 mm) and orientation (0 and 90 degrees) that was created at the mid-height, the 1/3rd and the 2/3rd of the shell height on the buckling behaviour of the composite cylindrical shells were evaluated. The results underscored that whilst the location of the local dent and the depth affected the shells’ buckling capacity, the dent's orientation had minimal effect on the buckling capacity of the cylindrical shells.
Publisher
Springer Nature Singapore