Author:
Gu Yunpeng,Zou Jie,Ma Chao,Zhang Yong,Zhang Mengtong,Ma Jianwei
Publisher
Springer Nature Singapore
Reference25 articles.
1. Saberironaghi, A., Ren, J., El-Gindy, M.: Defect detection methods for industrial products using deep learning techniques: a review. Algorithms 16(2), 95 (2023)
2. Tang, B., Chen, L., Sun, W., et al.: Review of surface defect detection of steel products based on machine vision. IET Image Proc. 17(2), 303–322 (2023)
3. Zhang, H., Zhang, Z.Q., Chen, Y.R., Wu, T.Y., Zhong, H., Wang, Y.N.: Application advance and prospect of nondestructive testing technology for industrial casting defects. Acta Automatica Sinica 48(4), 935–956 (2022)
4. Wu, Y., Qin, Y., Qian, Y., et al.: Hybrid deep learning architecture for rail surface segmentation and surface defect detection. Comput.-Aided Civil Infrastruct. Eng. 37(2), 227–244 (2022)
5. Tabernik, D., Sela, S., Skvarc, J., et al.: Segmentation-based deep-learning approach for surfacedefect detection. J. Intell. Manuf.Intell. Manuf. 31(3), 759–776 (2020)