1. Tang, C., Xue, D., Chen, D.: Feature diversity learning with sample dropout forunsupervised domain adaptive person re-identification. CoRR abs/2201.10212 (2022)
2. Ayinde, B.O., Inanc, T., Zurada, J.M.: Regularizing deep neural networks by enhancing diversity in feature extraction. IEEE Trans. Neural Netw. Learn. Syst. 30(9), 2650–2661 (2019)
3. Ayinde, B.O., Zurada, J.M.: Nonredundant sparse feature extraction using autoencoders with receptive fields clustering. Neural Netw. 93, 99–109 (2017)
4. Ogundijo, O.E., Elmas, A., Wang, X.: Reverse engineering gene regulatory networks from measurement with missing values. EURASIP J. Bioinf. Syst. Biol. 2017(1), 1–11 (2017)
5. Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J., Keutzer, K.: Squeezenet: alexnet-level accuracy with 50x fewer parameters and 0.5 mb model size. arXiv preprint arXiv:1602.07360 (2016)