1. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of IEEE Conference on Computer Vision and PatternRecognitio, pp. 770–778 (2016)
2. Zhu, H., Qin, L., Sun, B.: Review on parallelization of deep neural networks. J. Chin. J. Computer. 41(8), 171–191 (2018). https://doi.org/10.11897/SP.J.1016.2018.01861
3. Krizhevsky, I.S., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Proceedings of Advance Neural Information and Processing Systems, pp. 1097–1105 (2021)
4. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: Proceedings of International Conference on Machine Learning, pp. 807–814 (2010)
5. Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing coadaptation of feature detectors. arXiv:1207.0580 (2012)