1. Abdollahi, A., Pradhan, B.: Explainable artificial intelligence (XAI) for interpreting the contributing factors feed into the wildfire susceptibility prediction model. Sci. Total Environ. 879, 163004 (2023). https://doi.org/10.1016/j.scitotenv.2023.163004
2. Alkhatib, R., Sahwan, W., Alkhatieb, A., Schütt, B.: A brief review of machine learning algorithms in forest fires science. Appl. Sci. 13(14) (2023). https://doi.org/10.3390/app13148275, https://www.mdpi.com/2076-3417/13/14/8275
3. de Bem, P., de Carvalho Júnior, O., Matricardi, E., Guimarães, R., Gomes, R.: Predicting wildfire vulnerability using logistic regression and artificial neural networks: a case study in Brazil. Int. J. Wildland Fire 28(1), 35–45 (2018). https://doi.org/10.1071/WF18018
4. Bergstra, J., Yamins, D., Cox, D.D.: Making a science of model search: hyperparameter optimization in hundreds of dimensions for vision architectures. In: Proceedings of the 30th International Conference on International Conference on Machine Learning, vol. 28, pp. I-115–I-123. ICML 2013, JMLR.org (2013)
5. Center, N.I.F.: National Wildfire Coordinating Group (NWCG). Interagency Standards for Fire and Fire Aviation Operations. Createspace Independent Publishing Platform, Great Basin Cache Supply Office: Boise, ID, USA (2019)