Author:
Darrab Sadeq,Allipilli Harshitha,Ghani Sana,Changaramkulath Harikrishnan,Koneru Sricharan,Broneske David,Saake Gunter
Publisher
Springer Nature Singapore
Reference16 articles.
1. Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: LOF: identifying density-based local outliers (2000)
2. Chen, G., Zhang, X., Wang, Z.J., Li, F.: Robust support vector data description for outlier detection with noise or uncertain data. Knowl.-Based Syst. 90, 129–137 (2015)
3. Degirmenci, A., Karal, O.: Efficient density and cluster based incremental outlier detection in data streams. Inf. Sci. 607, 901–920 (2022)
4. IFIP Advances in Information and Communication Technology;A Dey,2022
5. Kartik: Fraud detection dataset (2020). What about this: https://www.kaggle.com/datasets/kartik2112/fraud-detection?select=fraudTrain.csv