Author:
Agarwal Neha,Sikka Geeta,Awasthi Lalit Kumar
Reference47 articles.
1. Bhardwaj, K.C., Sharma, R.: Machine learning in efficient and effective web service discovery. J. Web Eng. 14(3 & 4), 196–214 (2015)
2. Zhang, N., Wang, J., He, K., Li, Z., Huang, Y.: Mining and clustering service goals for restful service discovery. Knowl. Inf. Syst. 58(3), 669–700 (2019)
3. Blake, M.B., Nowlan, M.E.: Knowledge discovery in services (KDS): aggregating software services to discover enterprise mashups. IEEE Trans. Knowl. Data Eng. 23(6), 889–901 (2010)
4. Cao, B., Liu, X.F., Liu, J., Tang, M.: Effective mashup service clustering method by exploiting LDA topic model from multiple data sources. In: Asia-Pacific Services Computing Conference, pp. 165–180. Springer, Berlin (2015)
5. Shi, M., Liu, J., Zhou, D., Tang, M., Cao, B.: WE-LDA: a word embeddings augmented LDA model for web services clustering. In: 2017 IEEE International Conference on Web Services (ICWS), pp. 9–16. IEEE (2017)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献