1. Govindasamy, K., & Velmurugan, T. (2018). Analysis of student academic performance using clustering techniques. International Journal of Pure and Applied Mathematics, 119(15), 309–323.
2. Majeed, I., & Naaz, S. (2018). Current state of art of academic data mining and future vision. Indian Journal of Computer Science and Engineering (IJCSE), 09(02). https://doi.org/10.21817/indjcse/2018/v9i2/180902026
3. Alapont, J., Bella-Sanjuán, A., Ferri, C., Hernández-Orallo, J., Llopis-Llopis, J., & Ramírez-Quintana, M. (2005). Specialised tools for automating data mining for hospital management. In Proceedings of the First East European Conference on Health Care Modelling and Computation, Craiova, Romania, 31 August–2 September 2005; pp. 7–19.
4. Ramesh, V., Parkavi, P., & Ramar, K. (2013). Predicting student performance: A statistical and data mining approach. International Journal of Computer Applications 63(8).
5. Abu Saa, A. (2016). Educational data mining and students’ performance prediction. International Journal of Advanced Computer Science and Applications 7(5).