Based on Fuzzy Non-dominant and Sparse Individuals to Improve Many-Objective Differential Evolutionary
Author:
Xu YulongORCID,
Pan Xu,
Jiao Xiaomin,
Lv Yali,
Song Ting
Publisher
Springer Singapore
Reference18 articles.
1. Herrero, J.G., Berlang, A., et al.: Effective evolutionary algorithms for many-specifications attainment: application to air traffic control tracking filters. IEEE Trans. Evol. Comput. 13(1), 151–168 (2009)
2. Ishibuchi, H., Murata, T.: A multi-objective genetic local search algorithm and its application to flowshop scheduling. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 28(3), 392–403 (1998)
3. Yeung, S.H., Man, K.F., et al.: A trapeizform U-slot folded patch feed antenna design optimized with jumping genes evolutionary algorithm. IEEE Trans. Antennas Propag. 56(2), 571–577 (2008)
4. Handl, J., Kell, D.B., et al.: Multi-objective optimization in bioinformatics and computational biology. IEEE/ACM Trans. Comput. Biol. Bioinf. 4(2), 279–292 (2007)
5. Ponsich, A., Jaimes, A.L., et al.: A survey on multi-objective evolutionary algorithms for the solution of the portfolio optimization problem and other finance and economics applications. IEEE Trans. Evol. Comput. 17(3), 321–344 (2013)