Author:
Liang Jing,Wei Panpan,Qu Boyang,Yu Kunjie,Yue Caitong,Hu Yi,Ge Shilei
Reference35 articles.
1. Li, W., Ding, S., Wang, H., Chen, Y., Yang, S.: Heterogeneous ensemble learning with feature engineering for default prediction in peer-to-peer lending in China. World Wide Web 23, 23–45 (2020).
https://doi.org/10.1007/s11280-019-00676-y
2. IFIP Advances in Information and Communication Technology;A Barushka,2018
3. Bekiroglu, K., Duru, O., Gulay, E., Su, R., Lagoa, C.: Predictive analytics of crude oil prices by utilizing the intelligent model search engine. Appl. Energy 228, 2387–2397 (2018)
4. Lemaître, G., Nogueira, F., Aridas, C.K.: Imbalanced-learn: a python toolbox to tackle the curse of imbalanced datasets in machine learning. J. Mach. Learn. Res. 18(1), 559–563 (2017)
5. Oh, S., Lee, M.S., Zhang, B.T.: Ensemble learning with active example selection for imbalanced biomedical data classification. IEEE/ACM Trans. Comput. Biol. Bioinf. 8(2), 316–325 (2010)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献