1. Cao, H., et al.: Swin-Unet: Unet-like pure transformer for medical image segmentation. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds.) Computer Vision-ECCV 2022 Workshops: Tel Aviv, Israel, 23–27 October 2022, Proceedings, Part III, pp. 205–218. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-25066-8_9
2. Chen, J., et al.: TransUNet: transformers make strong encoders for medical image segmentation. arXiv:abs/2102.04306 (2021)
3. Lecture Notes in Computer Science;L-C Chen,2018
4. Codella, N., et al.: Skin lesion analysis toward melanoma detection 2018: a challenge hosted by the international skin imaging collaboration (ISIC). arXiv preprint arXiv:1902.03368 (2019)
5. Contributors, M.: MMSegmentation: Openmmlab semantic segmentation toolbox and benchmark (2020). https://github.com/open-mmlab/mmsegmentation