Birkhoff Pseudospectral Method and Convex Programming for Trajectory Optimization

Author:

Zhao Dangjun,Zhang Zhiwei,Gui Mingzhen

Abstract

AbstractTrajectory optimization, an optimal control problem (OCP) in essence, is an important issue in many engineering applications including space missions, such as orbit insertion of launchers, orbit rescue, formation flying, etc. There exist two kinds of solving methods for OCP, i.e., indirect and direct methods. For some simple OCPs, using the indirect methods can result in analytic solutions, which are not easy to be obtained for complicated systems. Direct methods transcribe an OCPs into a finite-dimensional nonlinear programming (NLP) problem via discretizing the states and the controls at a set of mesh points, which should be carefully designed via compromising the computational burden and the solution accuracy. In general, the larger number of mesh points, the more accurate solution as well as the larger computational cost including CPU time and memory [1]. There are many numerical methods have been developed for the transcription of OCPs, and the most common method is by using Pseudospectral (PS) collocation scheme [2], which is an optimal choice of mesh points in the reason of well-established rules of approximation theory [3]. Actually, there have several mature optimal control toolkits based PS methods, such as DIDO [4], GPOPS [5]. The resulting NLP problem can be solved by the well-known algorithm packages, such as IPOPT [6] or SNOPT [7]. However, these algorithms cannot obtain a solution in polynomial-time, and the resulting solution is locally optimal. Moreover, a good initial guess solution should be provided for complicated problems.

Publisher

Springer Nature Singapore

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3