Development of Predictive Model for Surface Roughness Using Artificial Neural Networks
Author:
Publisher
Springer Nature Singapore
Link
https://link.springer.com/content/pdf/10.1007/978-981-16-9523-0_16
Reference22 articles.
1. Khoshaim AB et al (2021) Prediction of residual stresses in turning of pure iron using artificial intelligence-based methods. J Mater Res Technol (2021)
2. Rifai AP, Aoyama H, Tho NH, Dawal SZM, Masruroh NA (2020) Evaluation of turned and milled surfaces roughness using convolutional neural network. Measurement 161:107860
3. Gupta P, Singh B (2020) Local mean decomposition and artificial neural network approach to mitigate tool chatter and improve material removal rate in turning operation. Appl Soft Comput 96(2020):106714
4. Mikołajczyk T, Nowicki K, Bustillo A, Pimenov DY (2018) Predicting tool life in turning operations using neural networks and image processing. Mech Syst Signal Process 104:503–513
5. Sharma SK, Kumar ES (2014) Optimization of surface roughness in CNC turning of mild steel (1018) using Taguchi method. Carbon 100(2014):0–26
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3