1. Qi, C.R., Su, H., Ma, K., et al.: PointNet: deep learning on point sets for 3D classification and segmentation. In: Computer Vision and Pattern Recognition 2017, LNCS, pp. 72–85. Springer, Heidelberg (2017)
2. Qi, C.R., Yi, L., Su, H., et al.: PointNet++: deep hierarchical feature learning on point sets in a metric space. In: Advances in Neural Information Processing Systems 2017, LNCS, pp. 1–13. Springer, Heidelberg (2017)
3. Gu, P., et al.: Multi-head self-attention model for classification of temporal lobe epilepsy subtypes. In: Proceedings of the Frontiers in Physiology 11 2020, LNCS, pp. 1–13. Springer, Heidelberg (2020)
4. Su, H., Maji, S., Kalogerakis, E., et al.: Multi-view convolutional neural networks for 3D shape recognition. In: International Conference on Computer Vision 2015, LNCS, pp. 945–953. Springer, Heidelberg (2015)
5. Qi, C.R., Su, H., Niebner, M., et al.: Volumetric and multi-view CNNs for object classification on 3d data. In: Computer Vision and Pattern Recognition 2016, LNCS, pp. 5648–5656. Springer, Heidelberg (2016)